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Quantum knots and mosaics
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This observable is a quantum knot invariant

for 4x4 tile space. Knots have characteristic
invariants in nxn tile space.
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Aknot is defined as a closed, non-self-intersecting curve
that is embedded in three dimensions.

example: “construction” of the Trefoil knot:
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make a fuse the make it
“knot” free ends “look nice”
P e

start with a rope end up with a Trefoil

J. W. Alexander proved, that any knot can be represented
as a closed braid (polynomial time algorithm)

generators of the 3 strand braid group:
1 o, o' o,
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It is well known in knot theory, how to obtain the unitary matrix representation
of all generators of a given braid goup (see “Temperley-Lieb algebra™ and “path
model representation”). The unitary matrices U, and U,, corresponding to the
generators 6, and o, of the 3 strand braid group are shown on the left, where the
variable “0” is related to the variable “A” of the Jones polynomial by: A = ¢~
The unitary matrix representations of o;' and o;' are given by U;' and U3".

The knot or link that was expressed as a product of braid group generators can
therefore also be expressed as a product of the corresponding unitary matrices.

Instead of applying the unitary matrix U, we apply it’s controlled variant cU.
This matrix is especially suited for NMR quantum computers [4] and other
thermal state expectation value quantum computers: you only have to apply
cU to the NMR product operator /,, and measure /,, and 7, in order to obtain
the trace of the original matrix U.

Independent of the dimension of matrix U you only need ONE extra qubit for the
impl ion of cU as d to the i ion of U itself.

The measurement of 7,, and /,, can be accomplished in one single-scan experiment,

All knots and links can be expressed as a product of braid group generators (see
above). Hence the cor ding NMR pulse seq can also be das
a sequence of NMR pulse sequence blocks, where each block corresponds to the
controlled unitary matrix c¢U of one braid group generator.

This modular approach allows for an easy optimization of the NMR pulse
sequences: only a small and limited number of pulse sequence blocks have to
be optimized.

Comparison of experimental results, theoretical predictions, and simulated ex-
periments, where realisitic inperfections like relaxation, B, field inhomogeneity,
and finite length of the pulses are included.

For each data point, four single-scan NMR experiments have been performed:

of I, of 7, for 7,,, and for /,,.
If necessary each data point can also be obtained in one single-scan experiment
by measuring amplitude and phase in a referenced setting.

The Jones Polynomials can be reconstructed out of the NMR experiments by:
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Quantum Mechanics in a Nutshell

0. A state of a physical system
corresponds to a unit vector |S> in a
complex vector space.

|. (measurement free) Physical processes
are modeled by unitary transformations
applied to the state vector: |S> ----- > U|S>

2. 1f |S> = zl|el> + z2|e2> + ... + zn|en>

in a measurement basis {el,e2,...,en}, then
measurement of |S> yields |ei> with

probability |zi|"2.




Qubit

A qubit is the quantum version of
a classical bit of information.

al0> + b|1>

prob = [a]*2 prob = |b|/2




Quantum Gates
are unitary transformations
enlisted for the purpose of computation.
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Quantum Computation of the Trace
of a Unitary Matrix

Hadamard Test
0> H H -
Measure
0>
|phi> U

|0> occurs with probability
|/2 + Re[<phi|U|phi>]/2




Universal Gates

A two-qubit gate GG is a unitary linear mapping

GV@V—>V®V where V' is

a two complex dimensional vector space. We say that the gate G 1s universal
for quantum computation (or just universal) if G together with local unitary
transformations (unitary transformations from V' to V') generates all unitary
transformations of the complex vector space of dimension 2" to itself. It is

well-known [44] that CNOT is a universal gate.

Local Unitaries are generated (up to density) by
a small number of gates.

Explicit gate realization in the basis {|0), |1)}:

1 10 10
B R O R )




\III\I

1

31T
5142

RN

Knot Theory

ral enerators
| | \ A | |

mgg@

( ( Figure Eight Knot
183 =




Representative Examples of
Unitary Solutions to the
Yang-Baxter Equation that are Universal Gates.

1/v/2 0 o 1/v2\ Bell Basis Change Matrix

— 0 1/\/§ _1/\/§ 0 + X =
= 0 1/vV2 1/v2 0 R R : Sqrt[z]l
120 0 1/v/3 Corresponding Link Invariant
is Special Case of Homfly Poly.
a 0 0 O 0 0 0 a
! O 0 b O "o 0 b O O
= 0 c 00 R = 0 0 ¢ O
0 0 0 d d 0 0 0
1 00 O
001 0 (virtual crossing
Fo=1"09 10 o corresponds to
00 0 —1 swap gate.)

Swap Gate See paper by Heather Dye for classification of
with Phase 2 x2 Yang-Baxter gates.




Quantum Hall Effect

Figure 1: A schematics of the experimental setup of the Hall effect. A current
driven through the conductor, drawn as a prism, leads to the emergence of
voltage i the perpendicular divection. This i= the Hall voltage, which Maxwell
erroneously predicted to be zero,




There are two main theories of the FQHE:

e Fractionally-charged quasiparticles. This theory, proposed by Laughlin, hides the interactions
by constructing a set of quasiparticles with charge e'=efq, where the fraction is p/q as above.

e Composite Fermions. This theory was proposed by Jain, and Halperin, Lee and Read. In order to
hide the interactions, it attaches two (or, in general, an even number) flux quanta h/e to each
electron, forming integer-charged quasiparticles called Composite Fermions. The fractional states
are mapped to the Integer QHE. This makes electrons at a filling factor 1/3, for example, behave in
the same way as atfiling factor 1. A remarkable resultis that filling factor 1/2 corresponds to zero
magnetic field. Experiments support this.

A quasi-particle theory connected
with Chern-Simons Theory explains
the FQHE on the basis of “anyons™:
particles that have non-trivial (not +1

or -1) phase change when they
exchange places in the plane.
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Appiications of conformal field theory to the theory of fractional quantum Hall systems are
discussed. In particular, Laughlin’s wave function and its cousins are interpreted as conformal
blocks in certain rational conformal field theories. Using this point of view a hamiltonian is
constructed for electrons for which the ground state is known exactly and whose quasihole
excitations have nonabelian statistics; we term these objects “nonabelions”. It is argued that
universality classes of fractional quantum Hall systems can be characterized by the quantum
numbers and statistics of their excitations. The relation between the order parameter in the
fractional quantum Hall effect and the chiral algebra in rational conformal field theory is
stressed, and new order parameters for several states are given.

1. Introduction

The past few years have seen a great deal of interest in two-dimensional many
particle and (2 + 1)-dimensional field-theoretic systems from several motivations.
These include the fractional quantum Hall effect, high-temperature superconduc-
tivity and the anyon gas, conformal field theory in 1 + 1 dimensions and its relation
to 2+ 1 Chern-Simons—-Witten (CSW) theories, knot invariants, exactly soluble
statistical mechanical models in 1+ 1 dimensions, and general investigations of




3. Electron wave functions as conformal blocks: Laughlin states
and the hierarchy

Let us return to the Laughlin state in the disc geometry:

‘I,Laughlin(zl""’ ZN) = l—.[(zi _zj)qexp[_%zlzilzl ’ (31)

i<j

where g is an odd integer [3]. In the thermodynamic limit this state |0,; N)
describes a fluid ground state with a uniform number density p,=v/27=1/2m7q
inside a radius of order V2N . The GL description of this limit for a normalized
fluid state |a) of slowly varying density involves a gauge field

(alg™(2')la) &

iY(z)~ 3.2
()~ [—— (3.2)
In the GL description [4] this gauge field couples to the order parameter (which
has charge gq; we set the charge of the electron to 1 from now on) and also enters

with a Chern-Simons term
q
— | dw 3.3
47rf (3:3)

in the action. If we are interested primarily in statistics of excitations we may
expect such topological terms in the action to play a dominant role — since they
dominate all other terms at long distances and low energies. On the other hand, it
is now well known that CSW theory (i.e. (2 + 1)-dimensional gauge theory with
only a CS term in the action) for an abelian gauge field is closely connected to the
(1 + 1)-dimensional conformal field theory known as the “rational torus” [1,5).
The rational torus theory is characterized by a “level” N and is denoted by
U(1)y*. The level N can be determined in terms of g by comparing the abelian
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Apparatus and methods for performing quantum computa-
tions are disclosed. Such apparatus and methods may
include identifying a first quantum state of a lattice having
a system of quasi-particles disposed thereon, moving the
quasi-particles within the lattice according to at least one
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mining a computational result based on the second quantum
state of the lattice. A topological quantum computer encodes
information in the configurations of different braids. The
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moved around each other in a braid-like path. The quasi-
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may be present or not, which can be thought of as a “one”
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Non-Local Braiding is Induced
via Recoupling

B=F RF




Process Spaces Can be Abitrarily Large.
With a coherent recoupling theory, all
transformations are in the
representation of one braid group.




Fibonacci Model

One particle P.
One neutral state *

PP--->P or
PP > %
P P P




This “Fibonacci Particle” P
interacts with itself to
produce either itself or a
neutral particle

Specific Processes *,
Correspond to Basis
Vectors in the Process
Space.




Interaction Sequences of P and * do not admit two *’s in
a row.

There are Fibonacci numbers of such
sequences.

PPP
P

*P*> in V




Fibonacci Tree: T */.\'

5

Admissible Sequences
are the Paths from the Root




The Simple, yet Quantum Universal,
Structure of the Fibonacci Model
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Temperley Lieb Category
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The Key to Teleportation




Diagrammatic Matrices
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State and Matrix Duality
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Mathematical Models for Recoupling
Theory with Braiding come from a
Combination of
Penrose Spin Networks and
Knot Theory.

See “Temperley Lieb Recoupling Theory
and Invariants of Three-Manifolds” by
L. Kauffman and S. Lins, PUP, 1994.




Bracket Polynomial Model for
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The General Temperley Lieb Model
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Generalizing the Fibonacci Model

Closure, Bubble and Recoupling
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Local Braiding
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Redefining the Vertex is the key to obtaining
Unitary Recoupling Transformations.




The Recoupling Matrix is
Real Unitary at Roots of
Unity.

M[a,b,c,d]ij =




Theorem. Unitary Representations of the
Braid Group come from Temperley Lieb
Recoupling Theory at roots of unity.

A — 67)77/27“

Sufficient to Produce Enough Unitary
Transformations for Quantum
Computing.




Quantum Computation of
Colored Jones Polynomials and
WRT invariants.

aQ:O ifbF0 CE?/)S % =XZ,VB(X’Y)<;\£
o 2 Z 5 = B(o,O)a%ga

— B(0,0)(Ag) 2

Need to compute a diagonal
element of a unitary transformation.

Use the Hadamard Test.
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A knot is defined as a closed, non-self-intersecting curve
that is embedded in three dimensions.

example: “construction” of the Trefoil knot:

L)\/‘\/‘g

free ends
P ——

make it
“look nice”

make a
“knot”

start with a rope end up with a Trefoil

J. W. Alexander proved, that any knot can be represented
as a closed braid (polynomial time algorithm)

generators of the 3 strand braid group:

Aol s LA

It is well known in knot theory, how to obtain the unitary matrix representation
of all generators of a given braid goup (see “Temperley-Lieb algebra™ and “path
model representation”). The unitary matrices U, and U,, corresponding to the
generators &, and &, of the 3 strand braid group are shown on the left, where the
variable “0” is related to the variable “A” of the Jones polynomial by: A = e,
The unitary matrix representations of ;' and o;' are given by U;' and U;'.

The knot or link that was expressed as a product of braid group generators can
therefore also be expressed as a product of the corresponding unitary matrices.

Instead of applying the unitary matrix U, we apply it’s controlled variant cU.
This matrix is especially suited for NMR quantum computers [4] and other
thermal state expectation value quantum computers: you only have to apply
cU to the NMR product operator /,, and measure /,, and /,, in order to obtain
the trace of the original matrix U.

Independent of the dimension of matrix U you only need ONE extra qubit for the
implementation of ¢U as compared to the implementation of U itself.

The measurement of /,, and /,,can be accomplished in one single-scan experiment.

All knots and links can be expressed as a product of braid group generators (see
above). Hence the corresponding NMR pulse sequence can also be expressed as
a sequence of NMR pulse sequence blocks, where each block corresponds to the
controlled unitary matrix c¢U of one braid group generator.

This modular approach allows for an easy optimization of the NMR pulse
sequences: only a small and limited number of pulse sequence blocks have to
be optimized.




Three Strand and AJL Algorithms

The key idea behind the present quantum algorithms
to compute the Jones polynomial is to use unitary rep-
resentations of the braid group derived from Temperley-
Lieb algebra representations that take the form

p(o;) = AI + A~1U;

where o; is a standard generator of the Artin braid group,
A is a complex number of unit length, and U; is a sym-
metric real matrix that is part of a representation of
the Temperley-Lieb algebra. For more details about this
strategy and the background information about the Jones




The Temperley-Lieb Category
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Knot Theory has a
Combinatorial Model
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Figure 1. Reidemeister Moves




Bracket Model of Jones Polynomial
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More about Temperley Lieb Representations
Here is the simplest method (but limited for unitarity).




It is useful to think of the Temperley Lieb algebra as
generated by projections e; = U;/d so that e? = e; and
e;e;1e; = Te; where 7 = 62 and e; and e; commute for
i — 7] > 1.

With this in mind, consider elementary projectors
e = |A)(A| and f = |B)(B|. We assume that (A|A) =
(B|B) =1 so that e = e and f? = f. Now note that

efe =|A)(A|B)(B|A)(A| = (A|B)(B|A)e = Te
Thus
efe=re

where 7 = (A|B)(B|A).




This algebra of two projectors is the simplest instance
of a representation of the Temperley Lieb algebra. In
particular, this means that a representation of the three-
strand braid group is naturally associated with the alge-
bra of two projectors.

Quite specifically if we let (A| = (a,b) and |A) =
(a,b)! the transpose of this row vector, then

a’ ab
= 1A= | 4
is a standard projector matrix when a* 4+ b* = 1. To

obtain a specific representation,

2
let e; = [(1) 8] and ey = [Zb ZS]

It is easy to check that ejese; = a®e; and that esejes =

a2€2.




We define
U, = oe;
for i = 1,2 with a® = §72. Then we have , for i = 1,2
U? = 6U;, U UUy = Uy, UyU Uy = Us.

Thus we have a representation of the Temperley-Lieb al-
gebra on three strands. See [10] for a discussion of the
properties of the Temperley-Lieb algebra.

Now we return to the matrix parameters: Since a? +
b®> = 1 this means that 62 +b* = 1 whence b* =1—45"2.
Therefore b is real when 62 is greater than or equal to 1.




We are interested in the case where § = —A?—A~2 and
A s a unit complex number. Under these circumstances
the braid group representation

,0(0@') — Al + A_lUZ'

will be unitary whenever U, is a real symmetric matrix.
Thus we will obtain a unitary representation of the three-
strand braid group Bs when 6% > 1.

For any A with d = —A? — A~? these formulas define a
representation of the braid group. With A = exp(i0), we
have d = —2co0s(260). We find a specific range of angles 6
in the following disjoint union of angular intervals

6 € [0,7/6]U[r/3,2r/3|U[br /6, 77 /6]U[4n /3, b /3]U[117 /6, 2]

that give unitary representations of the three-strand braid
group. Thus a specialization of a more general represen-
tion of the braid group gives rise to a continuous family
of unitary representations of the braid group.




ON THE RELATIONSHIP WITH THE AJL
ALGORITHM

Here is how the KL (Kauffman-Lomonaco) algorithm
described in the previous section becomes a special case
of a generalization of the AJL algorithm: Here we use
notation from the AJL paper. In that paper, the genera-
tors U; (in our previous notation) for the Temperley-Lieb
algebra, are denoted by FE;.

Let L = Ay = sin(k6@). For the time being 6 is an
arbitrary angle. Let A = iexp(if/2) so that d = —A? —
A2 = 2co0s(0).

We need to choose 6 so that sin(kf) is non-negative
for the range of k’s we use (these depend on the choice of
line graph as in AJL). And we insist that sin(kf) is non-
zero except for £ = 0. Then it follows from trigonometry
that (Lx_1 + Lig11)/Li = d for all k.

Recall that the representation of the Temperley-Lieb
algebra in AJL is given in terms of F; such that E? = dF;
and the FE; satisty the Temperley-Lieb relations. Each
E; acts non-trivially at the ¢ and ¢ + 1 places in the




bit-string basis for the space and each FE; is based upon
Lo 1,Ls, Loy where a = z(7) is the endpoint of a walk
described by the bitstring using only first (¢ — 1) bits.
Bitstrings represent walks on a line graph. Thus 1011
represents the walk Right, Left, Right, Right ending at
node number 3 in

For p = 1011, 2(1) = 1,2(2) = 2,z3) = 1,z(4) =
1,2(5) = 3.
More precisely, if we let

v(a)) = [V/La—1/Las v/ Lat1/La]"

(i.e. this is a column vector. T denotes transpose.) Then

E; = Jv(2(2))){v(2(2))]-




Here it is understood that this refers to the action on the
bitstrings

obtained from the given bitstring by modifying the ¢ and
1+1 places. The basis order is 01 before 10. Conceptually,
this is a useful description, but it also helps to have the
specific formulas laid out.




Now look at the special case of a line graph with three
nodes and two edges:

The only admissible binary sequences are |110) and |101),
so the space corresponding to this graph is two dimen-

sional, and it is acted on by FE; with z(1) = 1 in both

cases (the empty walk terminates in the first node) and
FE5 with z(2) = 2 for |110) and 2(2) = 2 for |101). Then
we have

E1]110) = 0, E;|101) = d|101),

Eslxyz) = |v)(v]wyz)
(xyz = 101 or 110) where v = (1/1/d, \/d — 1/d)*"




If one compares this two dimensional representation
of the three strand Temperley - Lieb algebra and the
corresponding braid group representation, with the rep-
resentation Kauffman and Lomonaco use in their paper,
it is clear that it is the same (up to the convenient re-
placement of A = exp(if) by A = iexp(:16/2)). The trace
formula of AJL is a variation of the trace formula that
Kauffman and Lomonaco use. Note that the AJL algo-
rithm as formulated in [2] does not use the continuous
range of angles that are available to the KL algorithm.
In the sequel to this paper and in a separate paper on
the mathematics, we shall show how the entire AJL al-
gorithm generalizes to continuous angular ranges.




AJL is based on the following projector formalism.

A - E=vv '
_ Ao
Y A - VA— A+
A+ e Ao Ao
Ao B
VA - A+ A +
A0 Ao




Use this formalism on strings p of binary bits.

Each string is an instruction to walk on a line graph
with "1" denoting "go right" and "0" denoting "go left".
Let z(i) = path endpoint(pli)

pli refers to the string from position 0 to position (i-1).

A z(i)-1
A z(i)

A z(i)+1

A z(i)

Thus E j (p) acts on the i and i+1 places in the walk and
these places depend upon the walk that is described by

the binary string p.




A z(i)-1

A z(i)

A z(i)+1

A z(i)
Thus Ej(p) acts on the i and i+1 places in the string.

The operators are indexed by the walk positions.

We need, foralli, d= hit * M
i
1
A z@i)+1 A z(i +1) -1
0 < A z(i) A z(i +1
A
1 s
Vv

z(i+1) = z(i) + 1
Az@i) = N z(i +1) -1

This shows that the requirement on d (above)
is sufficient to obtain the representation of the

Termperley Lieb algebra of the space of
binary strings.




Let }\.k = sin( O k) .

Then Ai1 + M
A

=2cos(0)

For appropriate range of angles, this gives
real symmetric representation of Temperley
Lieb algebra on the space of binary strings.

There are continous angular ranges to choose
from.




Traces

Let M denote our TL representation on the
space of binary strings. Define

TRM) = 2% A tr(My)
k

where M | denotes M restricted to paths P
that end at k.

We will show that

d TR( ) = TR( )

y

M

This is the needed Markov trace condition for the link
Invariant.




dTR(

=d z 7\,k (}Mk_1 / 7\.k) tr(

k

= Zk”» k-1 T A kat)

Z A tr(

+ A (Ak+1/ Ay

| |

TR(




This completes a description of
a generalization of the AJL algorithm
that we are using for experiments
with NMR quantum computation.

And this concludes our sketch of
this corner of
topological quantum information theory.

Will topology play a key role
in the future of quantum computation?

Time will tell.







